Contrast Use in Cardiac CTA Applications

Top 10 indications for coronary CTA

Ruling out stenosis in patients at low-to-intermediate risk for coronary artery disease tops the list, but coronary CT angiography has a much broader role to play.

Stephan Achenbach, MD
Dr. Achenbach is a Staff Cardiologist and Professor of Medicine, University of Erlangen–Nürnberg, Erlangen, Germany.

The leading indication for coronary computed tomographic angiography (CTA) is in ruling out coronary stenosis in patients with low-to-intermediate risk for coronary artery disease. Coronary CTA has the potential for broader application, however. This article will explore 10 indications for coronary CTA, dividing them into 3 general categories: ruling out coronary stenosis, establishing the patency of bypass grafts, and resolving questions after cardiac catheterization (Table 1).

Crafting a “Top 10” list is, by definition, a subjective exercise. This list, however, is based on scientific data, knowledge of recent advancements in CT technology, and an understanding of the diagnostic needs of clinicians and patients.

State of the art

Thanks to rapid advances in scanner technology, CTA is capable of producing stunning high-resolution images of the coronary arteries. Dual-source CT is the latest major technical innovation, but it was the 64-slice scanner, with a spatial resolution of 0.4 mm and a temporal resolution of 165 msec, that made coronary CTA a practical reality for clinical diagnosis.

As impressive as recent technical achievements are, CTA continues to fall short of the clinical gold standard, invasive coronary angiography. The spatial resolution of invasive angiography is 0.2 mm, twice that of coronary CTA. When considered in 3 dimensions, this seemingly small difference yields an 8-fold difference in spatial resolution.

Invasive coronary angiography has extremely high temporal resolution. While the frame rate is usually between 12 and 30 images per second, the exposure time for a single image frame captured during invasive angiography is approximately 8 msec. This dramatic advantage in temporal resolution as compared with CTA highlights an important challenge for CTA in imaging the beating heart.

Coronary CTA and invasive angiography both expose the patient to radiation, and both require the use of iodinated contrast material. They differ in the method of contrast administration, however. Coronary CTA involves intravenous injection of contrast material, whereas invasive coronary angiography benefits from direct injection of undiluted contrast material into the coronary artery. Therefore, the degree of contrast between the vessels and the surrounding structures is substantially higher with invasive coronary angiography.

Additional limitations of coronary CTA include the need for the patient to be in normal sinus rhythm and the inability to proceed directly from diagnosis to intervention.

In addition, heavy calcification may obscure the lumen on coronary CTA, making it difficult to accurately determine the degree of stenosis. This problem is less prominent on a 64-slice CT scanner, however, given its high spatial resolution.

Of these technical differences, temporal resolution remains the most challenging, making CT vulnerable to motion artifacts at high heart rates. Indeed, there is an inverse relationship between heart rate and CT image quality. The higher the heart rate, the greater the likelihood of blurring the coronary arteries.

It is important to note that accurate assessment of calcified coronary arteries by CT angiography depends not just on spatial resolution but also on temporal resolution. As shown in Figure 1, blurring of calcified structures due to cardiac motion accounts for most of the problems encountered in the evaluation of heavily calcified coronary arteries. When motion is suppressed through very high temporal resolution or multiphasic reconstruction, even severely calcified coronary arteries often are evaluable by CT angiography. In Figure 2, dual-source CT—which has a temporal resolution of 83 msec—clearly shows the arterial lumen in a patient with large areas of calcification in the left anterior descending (LAD) coronary artery.

To overcome the limitations of temporal resolution, it has become standard practice to administer beta-blockers to virtually all patients. At our institution, we aim for a heart rate <60 bpm for 64-slice CT, which ensures a predictably high image quality. To further optimize image quality, we administer nitrates immediately prior to the scan, in order to...
Contrast Use in Cardiac CTA Applications

Table 1. Top 10 indications for coronary CT angiography

Rule out coronary stenoses
1. Chest pain, low-to-intermediate likelihood of disease
2. Preoperative evaluation, non-coronary surgery
3. Intermittent arrhythmias
4. Alternative to invasive angiography if invasive angiography can only be performed at high risk

Establish patency of bypass graft
5. Alternative to invasive angiography
6. Bypass graft not visualized on invasive angiography

Resolve questions after cardiac catheterization
7. Coronary anomalies
8. Native coronary artery not visualized on invasive angiography
9. Clarify findings of invasive angiography
10. Guidance of percutaneous coronary intervention

CTA is proving to be a highly accurate diagnostic tool in selected applications.

Several studies have shown coronary CTA to have a sensitivity of approximately 95% for the detection for coronary artery stenosis and a specificity of >90% — a very high value for a noninvasive imaging technique.2-4

However, in gauging the clinical utility of an imaging technique, it is often more relevant to evaluate data in terms of the detection of disease in a given patient rather than in a given coronary artery. Several recent studies have reported the per-patient accuracy of 16- and 64-slice coronary CTA for the detection of at least 1 significant stenosis of the coronary arteries. Sensitivity is impressively high — 95% to 100%. Specificity is slightly lower — 83% to 100% for 16-slice CT and 90% to 100% for 64-slice CT — largely because of the tendency of CT to overestimate the severity of stenosis, particularly in calcified arteries.

Perhaps more important, the negative predictive value is approximately 95% to 100%. Therefore, if the CT scan is of high quality and does not show coronary artery stenosis, the physician can be very confident that the patient does not have significant coronary artery disease.5,13

CT angiography is also highly accurate for the detection of bypass graft patency and occlusion, with accuracies of 100% reported in many studies.7 The accuracy of CTA for the detection of stenosis in the native coronary arteries in a patient who has undergone bypass surgery is not as well established. It is substantially more difficult to evaluate such patients with CT angiography, as the native coronary arteries tend to be severely calcified and the coronary lumens small.

Rule out coronary stenosis
Taking into account all of the preceding information, it is possible to devise a list of the Top 10 applications of coronary CTA. As mentioned earlier, the most important application is to rule out coronary stenosis in patients with a low-to-intermediate likelihood of coronary artery disease. Figure 3 offers an excellent example. This 56-year-old woman who complained of occasional chest pain and, on bicycle stress electrocardiography (ECG), developed ST-segment changes in the inferior leads. To further clarify her clinical condition, the patient underwent coronary CTA, which indicated normal left main, LAD, left circumflex, and right coronary arteries.

Two-dimensional reconstructions were sufficient to convince physicians of the absence of a coronary stenosis. Three-
Contrast Use in Cardiac CTA Applications

In the past, performing a CT scan and an invasive angiogram in immediate succession would likely have raised concerns about the potential for nephrotoxicity, given the large contrast load. Today, coronary CTA involves the use of only approximately 60 mL of contrast material, a volume small enough to minimize such risks.

Another application that comes under the general heading of ruling out coronary stenosis is the evaluation of patients before noncoronary cardiac surgery. An example would be an elderly patient with an atrial myxoma diagnosed on echocardiography. Coronary CTA could be used to evaluate the patient before surgery to remove the myxoma, potentially avoiding the need for invasive angiography.

Coronary CTA is also performed as part of the work-up of intermittent arrhythmias—for example, in a patient with a history of syncope and ventricular tachycardia on Holter monitoring. Often, the electrophysiologist needs to rule out coronary artery disease in such patients. If the arrhythmias are only intermittent, CT is a good option for performing that evaluation.

Occasionally, CTA is indicated for ruling out coronary stenosis in a patient who is unable to undergo invasive angiography or would be at very high risk during the procedure. Figure 4 shows a 53-year-old patient with a large (approximately 10-cm) aneurysm of the aortic root. Although cardiac catheterization could not be performed, coronary CTA visualized the...
Contrast Use in Cardiac CTA Applications

aneurysm and revealed normal coronary arteries. The patient successfully underwent surgery.

Bypass-graft patency
Coronary CTA is also indicated for establishing bypass-graft patency. It is a less compelling indication than ruling out stenosis of the native coronary arteries, however, because CTA has been shown to be reliable only in the assessment of the bypass graft itself. We do not yet know whether CTA can be used in a complete evaluation of the bypass patient, including the native coronary arteries.

Within the category of establishing bypass-graft patency, one application of coronary CTA—albeit an infrequent one—is as an alternative to cardiac catheterization in high-risk patients. An example might be a patient with Marfan syndrome, a history of aortic dissection, and symptoms that are suggestive of ischemia in the myocardial territory that is served by an aging bypass graft. Without risking cardiac catheterization, CTA can easily establish graft patency or occlusion in such a patient.

Another infrequent but useful application of CTA is determining the patency of a bypass graft not visualized on invasive angiography. Figure 5 shows a patient in whom invasive angiography failed to depict a Y-shaped bypass graft to the LAD and right coronary arteries. CT angiography clearly shows why: The superior anastomosis was not to the ascending aorta, as is usually the case, but instead to the brachiocephalic trunk, which was not explored with the angiographic catheter.

Questions after catheterization
Coronary CTA is occasionally indicated as a way to answer questions that arise during cardiac catheterization. One specific application is clarifying the origin and course of anomalous coronary arteries identified on invasive angiography. To accomplish this task during cardiac catheterization would require multiple image acquisitions from different angulations—and in many cases the anomalous course of the vessel would remain uncertain. It is much easier and more successful to examine anomalous coronary arteries with CTA.

Figure 4. A 53-year-old patient with an approximately 10-cm aneurysm of the aortic root. While cardiac catheterization could not safely be performed, (A and B) coronary CTA visualized the aneurysm and demonstrated normal coronary arteries.

Figure 5. Invasive angiography failed to show a Y-shaped bypass graft to the left anterior descending and right coronary arteries in this patient. CT angiography provides an explanation: The superior anastomosis is to the brachiocephalic trunk, which had not been explored by catheter.
Contrast Use in Cardiac CTA Applications

Just as with a bypass graft, native coronary arteries are not always visualized on invasive angiography. For example, a patient with an anterior-wall myocardial infarction might have wall-motion abnormalities on echocardiography, ST-segment elevation in the anterior and septal regions on the ECG, and characteristic increases in serum troponin levels. However, inadequate contrast filling on invasive angiography could prevent visualization of the culprit vessel, perhaps an occluded side branch of the LAD. In such a situation, even though infrequent, CT provides valuable diagnostic information, clearly depicting a high-grade stenosis or occlusion.

Occasionally, coronary CTA is used to clarify a finding of invasive angiography. One example is stenosis of the left main coronary artery, which sometimes is difficult to assess by invasive angiography. Figure 6 offers another example—in this case, a 54-year-old patient with possible dissection of the proximal LAD, which was suggested by the persistence of a small amount of contrast material after each injection. Intravascular ultrasound is one option for clarifying this finding. However, coronary CTA clearly shows

FIGURE 6. A 54-year-old patient was suspected of having a dissection of the proximal left anterior descending coronary artery, (A and B) which was suggested by the persistence of a small amount of contrast material (arrow) after each injection. (C and D) Coronary CT angiography shows that the proximal left anterior descending coronary artery is completely normal, suggesting that the persistence of contrast material was the result of a flow phenomenon.
that the proximal LAD is completely normal, suggesting that the persistence of contrast material merely results from a flow phenomenon.

Coronary CTA may also be able to provide useful information before percutaneous coronary intervention of certain lesions. A study by Mollet et al. found that in patients with chronic total occlusion of the coronary arteries, CT predicts the success of recanalization more reliably than invasive angiography. In Figure 7, invasive coronary angiography shows complete occlusion of the right coronary artery. CT angiography reveals almost no calcification over the length of the occlusion—an indication that recanalization is likely to be successful.

It is also possible for coronary CTA to provide information on bifurcation angles or plaque burden that could be useful for the interventionalist. This application of coronary CTA is promising but is still unproven.

Conclusion
The role of coronary CTA is in transition. In the past, it was performed only by experienced operators in selected patients. Based on these early excellent results, and with continuous improvements in technology, more cardiologists and radiologists are undergoing training and education. As a result, the availability of reliable coronary CTA is becoming more widespread, and coronary CTA is increasingly being incorporated into the clinical work-up of cardiology patients.

Of the Top 10 indications for coronary CTA, the most important is to rule out coronary artery stenosis. In a clinical setting, this use of coronary CTA is most appropriate in patients with a low-to-intermediate likelihood of coronary artery disease—for example, those with stable, atypical chest pain; those with equivocal findings of myocardial ischemia on other forms of diagnostic testing; and, potentially, those who come to the emergency room with chest pain of uncertain origin.

Initial clinical experience with coronary CTA should focus on the types of patients in whom good-quality images can be obtained. These include patients with a low and regular heart rate; with a reasonably normal body weight (obesity can create excessive image noise); and without established coronary artery disease, since severe calcification, bypass grafts, and stents complicate the interpretation of CT scans.

REFERENCES
Contrast Use in Cardiac CTA Applications

Discussion

ELLIOTT K. FISHMAN, MD: When you try to determine what the degree of stenosis is, or grading stenosis, what system do you use? What do you think is a good way of grading stenosis these days, knowing the limitations or advances in technology?

STEPHAN ACHENBACH, MD: Well, as we noted in the previous discussion, we cannot give an accurate percent grading of a stenosis. The spatial resolution of CT is just not there. So you have to look at the vessel pre- and poststenosis. But what do you look at? Do you look at just looking at the lumen, or do you try to determine what the degree of stenosis is, or grading stenosis, what system do you use? What do you think is a good way of grading stenosis these days, knowing the limitations or advances in technology?

ACHENBACH: “Systematic” is a difficult word, because it is also possible to underestimate. But more frequently, you will overestimate stenosis than underestimate. One thing I have observed, and I think many others have, is that the presence of calcium, especially, leads to the overestimation of stenosis. We tend to fear that calcium might obstruct stenosis, and you wouldn’t see it. But what really happens is that calcium causes the overestimation of stenosis, because of artifacts associated with calcium and very–low-intensity artifacts caused by a little motion in the coronary. But, more often than not, calcium leads to overestimation of stenosis.

WANN: Is it fair to think of calcium as being inside the wall and not in the lumen, in most cases? Is it like calcified mitral annulus that we see on the echo all the time? The calcium is not actually in the ventricle; the appearance is caused by a blooming artifact. Is that a reasonable way to think about it for CT as well—that the calcium is most often a healing process in the wall?

ACHENBACH: It’s in the wall, but it’s not known whether it is due to healing or not. You could have probably a debate for weeks about that. More often than not, calcium is in the wall and not actually encroaching on the lumen. Many experienced people even say that if you have a dense calcification, there is usually no high-grade stenosis associated with it. At least, often there is no high-grade stenosis, but it’s not always the case. But, as I said, more often than not, if you have severe calcification, there’s no stenosis and the tendency is rather to overestimate.

WANN: We always worry about the calcium and not being able to see behind the vessel, as you pointed out. I think that
is a major concern, but it seems to me that, in day-to-day practice, a bigger concern is that when we see calcium, we overestimate stenosis, and the severe calcified lesions often aren’t stenotic. For one reason or another, when you go to the cath lab, they’re just not.

ACHENBACH: I absolutely agree. I don’t want to encourage people to assume that if there’s a lot of calcium proximally, there’s no lesion. We should be careful not to put forward a strategy like that. But as you said, more often than not, severe calcium will cause overestimation of stenosis.

WANN: Another question that’s been raised by a number of people is about the negative predictive value of CT angiography. Those numbers have been carried out in people who’ve undergone catheterization. But those are generally the moderate-risk patients; they’re not the very-low-risk patients. In the emergency room, for example, to carry that low risk or negative predictive value, we really need to look at people in the emergency room who have a true low risk, who may or may not go to the cath lab. But, that data—correct me if I’m wrong—is just not available right now.

ACHENBACH: That’s absolutely true. We can expect that the negative predictive value will remain very high.

WANN: But the Bayes’ theorem says that anything that you see in a low-risk group has a higher likelihood of being artifactual wrong. We really need to do that study.

ACHENBACH: I think the Bayes’ theorem would say that you have more false positives in the low-likelihood group than you have in the high-likelihood group.

WANN: Yes.

ACHENBACH: So, we’re not too worried about it. We can always stay on the safe side. I think of the CT angiogram as a filter before the invasive angiogram. There are patients in whom you consider doing an invasive angiogram, but you use the CT first to try to avoid the invasive angiogram. So whenever we cannot clearly rule out the presence of stenosis by CT, either because we see a stenosis in CT, or because the image quality is not good enough to rule out the presence of stenosis, then the patients have to have the angiogram that was initially considered anyway. They’re trying not to create more invasive angiograms by scanning anybody by a CT; and everybody in whom image quality is not good or in whom findings are questionable has to go to the cath. We don’t want that. I want to use CTA as a filter in patients who are considered for cath, and if then the CT is normal, then you don’t have to do that cath.

WANN: What are your thoughts? I know some people are actually fusing the CT data in the cath lab to expedite the cath, to cut down on radiation, to choose views, and to measure stent length. Do you think that there is any future in actually moving the CT into the cath lab, not to replace fluoroscopy, but to supplement it?

ACHENBACH: I think that’s an interesting concept. I don’t think you will have tremendous savings in radiation dose. One thing we do in our institution, for example, is if we have a patient in whom we saw a LAD stenosis on the CT scan, when we do the right, we’ll visualize the right coronary artery with a diagnostic catheter, and we’ll use a guiding catheter right away to visualize the LAD. So it saves time, saves radiation, and also saves some of the contrast material. So, we do incorporate what we know from CT into the cath lab procedure.

WANN: Correct me if I’m wrong, but there are ways to actually marry the digital data in PET, SPECT, and the cath lab directly with the digital data with registration of the data. For example, in the EP laboratory, we are using that on a daily basis to assist our EP physicians in mapping procedures. Is that a wave of the future, too, do you think?

ACHENBACH: Probably yes. I think it’s going to be very, very difficult to have very accurate matching of CT data and invasive angiographic data because you have the motion or patient position that might be a little bit different. Often, a patient is breathing during the cath procedure. I have my personal doubts as to whether or not you can get co-registration with an accuracy of <1 mm, which would be necessary.

WANN: It would be easier in the atrium than in the coronaries for sure.

ACHENBACH: Yes. For EP, for perfusion and anatomy in CT, its accuracy doesn’t have to be down to 1 mm, yes, I would be very hopeful. If you have something that has to be super accurate, it’s probably theoretically possible, but hard to accomplish.

FISHMAN: You’re right. It’s just like looking at PET/CT, when you’re trying to do a 3- or 4-mm difference over time, it’s not a big deal, but getting less difference than that is very, very hard unless acquisition is done at the same time. It’s very hard to merge data sets.

There’s another point you made that is important to go back to, because I think we have all had the same experience. When you first start doing cardiac CT, you tend to overestimate all lesions rather than underestimate. I think the fear is that you will miss a patient who needs to go to the cath. Particularly in the presence of calcification, as you say, that’s where the greatest variability between individual readers would be with more or less experience. Some software now does do those measurements, or at least tries to calculate areas in terms of CT. That, indeed, may be helpful in giving some quantification.

ACHENBACH: I think the software tools are helpful, but they only work if you have optimal image quality, because the software will not automatically recognize artifacts. It all comes down to what we have heard over and over again today. You have to have high-quality data sets to work with.

FISHMAN: Absolutely. You mentioned dual-source CT. Do you use beta-blockers in those patients?

ACHENBACH: Currently, we don’t use beta-blockers in dual-source CT. It is definitely the case that dual-source CT can deal with higher heart rates than 64-slice CT, and still yield high-quality data sets.

FISHMAN: What’s your definition of a high heart rate?
Contrast Use in Cardiac CTA Applications

ACHENBACH: With 64-slice CT, anything >60 bpm is a high heart rate. With dual-source CT, we can easily cope with that. We just don’t have enough patients yet to tell us how accurate we are in heart rates even higher than that.

WANN: Stephan, what is your opinion about presentations at the recent SCCT meeting using another approach, the use of a 256-slice scanner to completely avoid retrospective gating or spiral scanning? That also has a potential advantage in terms of reducing radiation dose and even increasing temporal as well as spatial resolution.

ACHENBACH: I think it will happen. I think we’ll see the merging of two technologies in the future. The people who have 256-slice CT will probably introduce a second tube, or increase rotation time to improve the temporal resolution. Those people who have 2 sources will probably make the detectors wider. I think they will converge sooner more likely than later.

WANN: So, you’re reasonably confident that our temporal resolution will improve and our radiation dose will go down in the next couple of years?

ACHENBACH: Yes. Temporal resolution will improve and radiation dose will decrease. But I’m not so confident that spatial resolution will make tremendous advances, because spatial resolution is immediately tied to radiation exposure. If we want to double our spatial resolution, we have to increase the radiation exposure by a factor of 4. So unless we have other means of reducing radiation, I see a limit to really improving spatial resolution.

WANN: Does contrast dose affect spatial resolution?

ACHENBACH: Contrast concentration probably does. I think high contrast concentration is a good thing. Whether it directly influences spatial resolution, I’m not sure.

WANN: There was a mention earlier of using the saline flush to reduce potential toxicity from the contrast. Is that proven? Is a smaller contrast dose directly related to nephrotoxicity?

ACHENBACH: Well, I think a higher dose is related. If you use 60 or 80 mL, it probably wouldn’t translate into a measurable clinical difference. But, less contrast is safer, especially if you think about the combination of studies, such as if you do CT scan, and if you find something, you need to do the invasive angiogram right after it.

FISHMAN: Nephrotoxicity is definitely related to contrast volume; there’s no doubt. If you look at the literature, as Stephan is alluding to, if you use <100 mL contrast in most patients, there’s not going to be any issue in terms of nephrotoxicity showing up 3 days out.

WANN: That’s really my question. Is there a difference between 80 and 100?

FISHMAN: At that level, really, there is probably not a difference, except in some borderline patients.

ACHENBACH: If you do 150,000 patients, you will probably see a difference.

MATTHEW BUDOFF, MD: Well, actually, they have done pretty large data sets, mostly with CTs of noncardiac structures, that are actually in a pretty good range. They have not found a dose relationship to nephrotoxicity, so maybe it’s not going to the wide enough ranges. But there is no difference between 60 and 80 or 80 and 100 mL.

ACHENBACH: I have a feeling that many people use too much contrast in CT angiography of the coronaries. Often I hear people using 100 to 120 mL, even with a 64-slice scanner, where the acquisition is only about 10 seconds. When you only have an acquisition time of 10 seconds, you only need full contrast for the duration of 10 seconds. So, I think we can do with substantially less contrast than most investigators currently use.

WANN: It is intuitive that less contrast is better, but as Dr. Budoff has said, there’s a whole lot of proof that very low doses of contrast are, in fact, safer, although very high doses seem to be bad.

BUDOFF: Well, in the cath lab, we routinely avoid doing angiograms in patients with renal insufficiency, although there’s absolutely no science here. It might make us feel better; it probably doesn’t make the kidneys feel better. But it’s something that’s translated from common sense into common practice without a lot of science behind it. I think Stephan’s other point, though, is more important: That if we are willing to go from the CT to the cath lab, then sparing radiation and contrast up front, if we’re going to repeat that in some capacity, is even more important.

FISHMAN: Forgetting cardiac cath or cardiac CT for a second, the more important factors in patients who develop nephrotoxicity in large hospital studies are multiple studies over short periods of time. Once you go from 1 study to 2 studies within 24 hours, that’s really where the toxicity picks up.

Further on toxicity, I have a question in terms of using specific contrast agents, such as isosmolar agents. Has anyone routinely used isosmolar contrast for cardiac CT or cath?

JILL E. JACOBS, MD: We do. We actually alternate between Visipaque and Ultravist.

JAMES K. MIN, MD: We exclusively use Visipaque for all of our coronary CT scans.

FISHMAN: So do we. Why do you do that?

MIN: I like the contrast enhancement with 320 mgI/mL. We started with Isovue at 370, we went down to 270. I just like the safety profile of Visipaque, and I think that the contrast enhancement supports visualization of even minimal soft plaque abutting the arterial wall.

FISHMAN: There have been articles, more from the cardiac cath literature, that have shown that the isosmolar agents do not affect the heart rate as much. So, once you inject, you don’t have that little bump of 5 to 7 beats, so that would be another good advantage. In our practice, we routinely use it.

WANN: We switched to an isosmolar agent because of the heart rate variability. We didn’t do a systematic study, but a few patients would show a heart rate bump, and the technical quality of the study wasn’t optimal. With an isosmolar agent, we don’t get the flushing or quite as much heart rate variability. I haven’t quantified that, but that’s our rationale for using it as well.
Contrast Use in Cardiac CTA Applications

FISHMAN: Another point about heart rate, from the technical perspective, is that the technologist needs to be very careful figuring out how the patient’s heart rate reacts to contrast, particularly in the test bolus. You can get a feel that some patients’ heart rates go up quickly. I don’t care if they’ve had beta-blockers or not; a lot of patients just get very apprehensive when the machine starts humming, their heart rate goes up, and then it quickly comes down. So, we’ll often watch that and will test patients. Then you’ll know if you have to wait a few more seconds before you start the study.

JACOBS: I think the other thing is that when you’re testing patients, and you’ve given them beta-blockers, you have to remember that sometimes in full inspiration you can get significant bradycardia compared to rest. So you always want to test them, in inspiration.

WANN: There seems to be a divergence of opinion about using bolus tracking versus test bolus. We have used bolus tracking from the beginning, and find it very useful and very easy. So we have never done test boluses. But I understand others rely on test boluses for this kind of thing.

MIN: Well we don’t have the option. On the GE scanner, you can’t do an automated bolus detection. So you just end up doing a timing bolus.

BUDOFF: Oh, no, for the GE, we have done bolus tracking. We actually switched from it. I still prefer the test bolus, because I think it gives me a chance to test the IV, to look at the heart rate variability and to see how the patient responds to the contrast. It gives the patients a first chance to get warm from the contrast, if they are going to get that. This way, when they get a bigger dose, it’s not as big a deal to them. But, at our other site, where we use VCT, they exclusively use bolus tracking and they don’t use a test bolus. But the results have been good, and the image quality has been good, so I haven’t been able to tell them that that’s not appropriate.

ACHENBACH: We’ll stop on that point, and say that the scanning and contrast technique is critical.